skip to main content


Search for: All records

Creators/Authors contains: "Gu, Qiusheng"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. ABSTRACT

    Peculiar motion of galaxies probes the structure growth in the universe. In this study, we employ the galaxy stellar mass-binding energy (massE) relation with only two nuisance parameters to build the largest peculiar-velocity (PV) catalogue to date, consisting of 229 890 ellipticals from the main galaxy sample (MGS) of the Sloan Digital Sky Survey (SDSS). We quantify the distribution of the massE-based distances in individual narrow redshift bins (dz = 0.005), and then estimate the PV of each galaxy based on its offset from the Gaussian mean of the distribution. As demonstrated with the Uchuu-SDSS mock data, the derived PV and momentum power spectra are insensitive to accurate calibration of the massE relation itself, enabling measurements out to a redshift of 0.2, well beyond the current limit of z = 0.1 using other galaxy scaling laws. We then measure the momentum power spectrum and demonstrate that it remains almost unchanged if varying significantly the redshift bin size within which the distance is measured, as well as the intercept and slope of the massE relation, respectively. By fitting the spectra using the perturbation theory model with four free parameters, fσ8 is constrained to fσ8 = 0.459$^{+0.068}_{-0.069}$ over Δz = 0.02–0.2, 0.416$^{+0.074}_{-0.076}$ over Δz = 0.02–0.1, and 0.526$^{+0.133}_{-0.148}$ over Δz = 0.1–0.2. The error of fσ8 is 2.1 times smaller than that by the redshift space distortion (RSD) of the same sample. A Fisher matrix forecast illustrates that the constraint on fσ8 from the massE-based PV can potentially exceed that from the stage-IV RSD in late universe (z<0.5).

     
    more » « less
  2. ABSTRACT

    Distance-redshift diagrams probe expansion history of the Universe. We show that the stellar mass-binding energy (massE) relation of galaxies proposed in our previous study offers a new distance ruler at cosmic scales. By using elliptical galaxies in the main galaxy sample of the Sloan Digital Sky Survey Data Release 7, we construct a distance-redshift diagram over the redshift range from 0.05 to 0.2 with the massE ruler. The best-fit dark energy density is 0.675 ± 0.079  for flat Λ-cold dark matter (ΛCDM) model, consistent with those by other probes. At the median redshift of 0.11, the median distance is estimated to have a fractional error of 0.34 per cent, much lower than those by supernova (SN) Ia and baryonic acoustic oscillation (BAO) and even exceeding their future capability at this redshift. The above low-$\mathit{ z}$ measurement is useful for probing dark energy that dominates at the late Universe. For a flat dark energy equation of state model (flat wCDM), the massE alone constrains w to an error that is only a factor of 2.2, 1.7, and 1.3 times larger than those by BAO, SN Ia, and cosmic microwave background (CMB), respectively.

     
    more » « less